Probabilities of hitting a convex hull
نویسندگان
چکیده
In this note, we consider the non-negative least square method with a random matrix. This problem has connections with the probability that the origin is not in the convex hull of many random points. As related problems, suitable estimates are obtained as well on the probability that a small ball does not hit the convex hull. Abstract Dans cette Note nous appliquons la méthode des moindres carrés non-négatifs avec une matrice aléatoire. Ce problème est connecté à la probabilité que l’enveloppe convexe de points aléatoires ne contienne pas l’origine. En relation avec ce problème nous obtenons aussi des estimations de la probabilité qu’une petite boule ne rencontre pas une enveloppe convexe.Dans cette Note nous appliquons la méthode des moindres carrés non-négatifs avec une matrice aléatoire. Ce problème est connecté à la probabilité que l’enveloppe convexe de points aléatoires ne contienne pas l’origine. En relation avec ce problème nous obtenons aussi des estimations de la probabilité qu’une petite boule ne rencontre pas une enveloppe convexe.
منابع مشابه
Convexity and geometric probabilities
In the development of the subject of Geometric Probabilities, there was always a close relationship to Convex Geometry. In these lectures, I want to demonstrate this relationship with a number of examples. These examples are of different types, since I want to cover various aspects. I start with hitting probabilities for convex bodies, which can be treated by means of integral geometry. Then I ...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملL-CONVEX SYSTEMS AND THE CATEGORICAL ISOMORPHISM TO SCOTT-HULL OPERATORS
The concepts of $L$-convex systems and Scott-hull spaces are proposed on frame-valued setting. Also, we establish the categorical isomorphism between $L$-convex systems and Scott-hull spaces. Moreover, it is proved that the category of $L$-convex structures is bireflective in the category of $L$-convex systems. Furthermore, the quotient systems of $L$-convex systems are studied.
متن کاملAsymptotic mean values of Gaussian polytopes
We consider geometric functionals of the convex hull of normally distributed random points in Euclidean space R. In particular, we determine the asymptotic behaviour of the expected value of such functionals and of related geometric probabilities, as the number of points increases.
متن کامل